Стоимость
Бензин
Нормаль 80
39 300 Р
Бензин
Регуляр 92
39 500 Р
Бензин
Премиум 95
42 800 Р
ДТл
34 300 Р
РТ
32 300 Р
СПБТ
24 300 Р
Битум
8 300 Р

Способы получения нефтяных битумов

Различают три основных способа производства нефтяных битумов.

1. Концентрирование нефтяных остатков путем перегонки их в вакууме в присутствии водяного пара или инертного газа (при переработке сверхтяжелых асфальто-смолистых нефтей остаточные битумы могут быть получены атмосферной перегонкой). В некоторых странах к остаточным битумам относят и асфальт процесса деасфальтизации гудрона. В других странах его выделяют в отдельный способ - получение осажденных битумов.

2. Окисление кислородом воздуха различных нефтяных остатков (мазутов, гудронов, полугудронов, асфальтов деасфальтизации, экстрактов селективной очистки масел, крекинг остатков или их смесей) при температуре 180 - 300° С

3. Компаундирование (смешение) различных нефтяных остатков с дистиллятами и с окисленными или остаточными битумами и др.

Кроме того, возможны и сочетания указанных выше способов.

Для производства нефтяных битумов используют процессы вакуумной перегонки, окисления и деасфальтизации. Сырьем вакуумной перегонки обычно является мазут; для окисления и деасфальтизации применяют гудрон. Товарные битумы получают как непосредственный продукт того или иного процесса либо компаундированием продуктов разных процессов, либо одного и того же процесса. Качество готовых битумов зависит в первую очередь от качества сырья, а для окисленных битумов еще и от температуры, продолжительности окисления и расхода воздуха.

Наилучшим сырьем для производства битума служат остаточные продукты переработки тяжелых смолисто-асфальтеновых нефтей: гудроны, крекинг - остатки, асфальты и экстракты очистки масел. Чем больше содержание смолисто-асфальтеновых компонентов в нефти, чем выше отношение асфальтены: смолы и чем меньше содержание твердых парафинов, тем выше качество получаемых битумов и проще технология их производства. Высокое содержание парафина в нефти отрицательно сказывается на важнейших эксплуатационных показателях битумов: прочность и прилипаемости к минеральным покрытиям. Нефти, из которых получают битумы, должны быть хорошо обессолены.

Остаточные битумы наиболее широкое использование находят в зарубежной практике. Так, во Франции 85% производимых битумов составляют остаточные битумы. Характерными признаками остаточных битумов в отличие от окисленных битумов являются:

а) относительно высокая плотность битума

б) высокая твердость и сопротивление к разрыву

в) чувствительность к изменению температуры

Погодостойкие остаточные битумы получают из высокосмолистых (асфальтеновых) нефтей.

Для получения остаточных битумов пригодны лишь определенные сорта нефтей - нафтенового и нафтеноароматического основания, т.е. тяжелые с малым содержанием парафинов.

Производство остаточных битумов основывается на атмосферно - вакуумной перегонке отборных нефтей. Битум отводится как товарный продукт снизу вакуумной колонны АВТ. В ряде случаев на АВТ имеется дополнительная вакуумная колонна специально для получения битума, в которой поддерживается остаточное давление от 3 до 10 мм. рт. ст. Основные параметры перегонки: температура, глубина вакуума и расход водяного пара. Обычно поддерживается температура 400 - 420°С, остаточное давление 30 - 70 мм.рт. ст. (параметры процесса определяет природа сырья). Сырье парафинового основания перегоняют при остаточном давлении ниже 10 мм.рт. ст., но при этом битум обедняется маслами. Регулируя режим процесса отбора можно получать остаточные битумы с различной пенетрацией.

Острый дефицит нефтяных битумов в народном хозяйстве обуславливает целесообразность освоения и использования тяжелых высокосмолистых нефтей для производства битумов.

Осажденные битумы (асфальты) получают в процессе деасфальтизации гудрона. За рубежом, например в США, Финляндии, эксплуатируются установки по деасфальтизации сырья, специализированные на производстве битумов или сырья для получения окисленных битумов. Режим деасфальтизации (температурный градиент в экстракционной колонне, соотношение пропан/сырье) регулируют в зависимости от требуемого качества битума. В таком процессе деасфальтизат (сырье для каталитического крекинга, гидрокрекинга) является уже побочным продуктом. Обычно для процесса используют нефти парафинового или смешанного основания, непригодные для непосредственного производства битумов. Процесс позволяет расширить сырьевые ресурсы битумного производства.

Битумы из асфальта деасфальтизации содержат меньше парафинонафтеновых соединений и больше смол и асфальтенов, что обуславливает их меньшую пенетрацию, интервал пластичности и большие растяжимость, температуру хрупкости и когезию по сравнению с битумами той же температуры размягчения, полученными окислением гудрона той же нефти.

На территории бывшего СССР нет ни одной установки деасфальтизации, работающей целенаправленно на производство битумов. Действующие установки пропановой деасфальтизации предназначены для производства остаточных масел. При этом качество асфальта не регламентируется и не контролируется.

Асфальты деасфальтизации могут быть переработаны в битумы: окислением; компаундированием с прямогонным гудроном; окислением в смеси с прямогонным гудроном; окислением асфальта до температуры размягчения порядка 100°С с последующим разжижением его гудроном или экстрактом селективной очистки масел.

Несмотря на то, что за рубежом используют специальные сорта тяжелой нефти, глубокая вакуумная перегонка часто не обеспечивает необходимых качественных показателей битума. Для повышения вязкости или температурной чувствительности вакуумных остатков используют процесс окисления, позволяющий получать продукт требуемого качества из сырья широкого ассортимента. Окисленные битумы по сравнению с остаточными битумами имеют при одинаковой пенетрации более высокие температуры размягчения и вязкость.

Широкое развитие вторичных процессов и использование их остатков в качестве сырья для производства битумов является предпосылкой для развития процессов окисления в промышленном производстве битумов.

Процесс окисления сырья при получении битумов протекает по радикально - цепному механизму. Кислород при взаимодействии с органическим соединением отщепляет водород или внедряется в молекулу, или то и другое одновременно. При этом происходит образование свободных радикалов и гидроперекисей в качестве промежуточных продуктов. Возникает цепная реакция. Обрыв цепей происходит в результате рекомбинации радикалов.

Температура процесса. Чем выше температура окисления, тем быстрее протекает процесс. Но при слишком высокой температуре ускоряются реакции образования карбенов и карбоидов. Остатки, пол ученные из высокосмолистых асфальтовых и смешанных нефтей, окисляют при 250 - 280°С, остатки парафинистых нефтей - при 270 - 290°С. В зависимости от природы сырья и требуемых свойств битумов следует подбирать соответствующую температуру окисления; для большинства видов сырья с учетом экономической целесообразности она близка к 250°С.

Давление. Повышение давления в зоне реакции способствует интенсификации процесса окисления и улучшению качества окисленных битумов. Дорожные битумы в реакторе колонного типа нецелесообразно получать при давлении выше 0,4 МПа вследствие резкого понижения растяжимости битумов. Окисление под давлением позволяет использовать сырье с малым содержанием масел и получать при этом битумы, обладающие достаточно высокой растяжимостью, пенетрацией и интервалом пластичности.

Расход воздуха. Расход воздуха, степень его диспергирования и распределения по сечению окислительной колонны существенно влияют на интенсивность процесса и свойства битумов. С повышением расхода воздуха на 1т сырья до определенного значения (1,4 м3/мин) эффективность процесса повышается, затем при дальнейшем увеличении ухудшается степень использования кислорода воздуха и снижается эффективность; теплостойкость окисленных битумов при этом повышается.

Процесс окисления остаточных фракций нефти воздухом в промышленной практике осуществляется в аппаратах разного типа: кубах периодического действия, трубчатых змеевиковых реакторах и пустотелых колоннах непрерывного действия.

Окисление в кубе - пустотелом цилиндрическом аппарате с небольшой величиной отношения высоты рабочей зоны к диаметру (обычно около 1,5) - осуществляют на старых установках или при производстве малотоннажных сортов битума. Этот метод используется и за рубежом.

Окисление в трубчатом реакторе с вертикальным расположением труб происходит в турбулентном потоке воздуха. Движение воздуха и окисляемого сырья - прямоточное. Прореагировавшая газожидкостная смесь поступает из реактора в испаритель, где разделяется на газы и жидкость. Газы уходят с верха испарителя на обезвреживание, а жидкая фаза - битум - из нижней части испарителя откачивается в парк.

Окисление в колонных аппаратах. В последние годы широко применяются полые окислительные колонны в качестве реакторов непрерывно действующих битумных установок. Непрерывно действующая окислительная колонна, характеризуется высокой производительностью, простым конструктивным оформлением, она легко управляема в процессе эксплуатации. Наличие на установке нескольких одинаковых колонн обеспечивает гибкость в работе, что весьма важно при широком ассортименте вырабатываемых битумов и сезонных его колебаниях. Достоинствами процесса окисления в аппаратах колонного типа являются также возможность стабилизации теплового режима окисления за счет изменения температуры сырья, поступающего в колонны, применение компрессоров низкого давления и возможность широкой степени автоматизации.

В колонне поддерживают определенный уровень окисляемого жидкофазного материала. Воздух на окисление подают в нижнюю часть колонны через маточник. Обычно сырье подают под уровень раздела фаз, а битум откачивают снизу колонны, при этом твердые осадки в колонне не накапливаются. Однако колонна обладает рядом существенных недостатков и основным из них является - невысокая степень использования кислорода воздуха при получении строительных и высокоплавких битумов. Это происходит по причине того, что она работает в режиме близком к идеальному перемешиванию. Окислению при этом подвергается не только и не столько «свежее» сырье, но и уже окисленные компоненты. Кроме того, к недостаткам пустотелых колонн следует отнести:


Сложность управления, вследствие многофакторности процесса;


достаточно высокие затраты топливно-энергетических ресурсов;


значительные колебания в качестве получаемой продукции, из-за нестабильности состава сырья и условий его окисления в различных точках колонны;


отсутствие в колонне устройств для дополнительного диспергирования смеси нефтяного остатка и пузырьков воздуха и т.д.

Кроме того, противоточные движения в аппарате нагревающегося сырья (сверху вниз) и горячего окисляемого продукта (снизу вверх) создают сложное и временами меняющееся распределение температур по продольному и поперечному сечениям внутри колонны. Это в свою очередь препятствует оптимизации температурного режима окисления и способствует оттеснению пузырьков воздуха к середине колонны.

Грудников И.Б. и Фрязинов В.В. предложили проводить окисление в колонне с квенчинг - секцией, в которой возможно поддержание оптимально высоких температур в зоне реакции колонны, обеспечивающих высокую степень использования кислорода воздуха, и оптимально низких температур в зоне сепарации, при которых не происходит закоксовывание стенок этой зоны. Сущность предложения заключается в конструктивном разделении зон реакции и сепарации, а также в охлаждении сырьем реакционной газожидкостной смеси, выходящей из зоны реакции в зону сепарации; при этом сырье попадает вначале в зону сепарации, только оттуда вместе с рециркулятом направляется в зону реакции.

Несмотря на более большую эффективность работы, по сравнению с пустотелыми колоннами окисления нефтяных остатков, колонны с квенчинг секцией все же имеют, правда, менее выраженные, но те же недостатки, что и первые. В связи с этим, продолжаются попытки создания соответствующего оборудования, позволяющего уйти от режима взаимного перемешивания сырья и продуктов к режиму окисления близкому к более эффективному идеальному вытеснению. Это возможно осуществить путем установки внутреннего стакана в окислительной колонне. Кроме того, интенсивность окисления существенно увеличивается при использовании в колонне мешалок и тарелок.

Опыт работы ряда зарубежных НПЗ свидетельствует о недостаточно надежной работе окислительных колонн с мешалками при получении битумов. Единственная реализованная в настоящее время такая технология принадлежит фирме «Пернер» (Австрия).

Окислительная колонна с внутренним стаканом.


Принципиальная схема устройства окислительной колонны, используемой, в технологии фирмы Пернер представлена, по заверению специалистов она отличается хорошей работоспособностью. Ее отличительной особенностью является не только наличие перемешивающего устройства, но и внутреннего стакана. Таким образом, несмотря на большое количество работ в области усовершенствования аппаратурного оформления процесса получения окисленных битумов, работы в этом направлении продолжаются.

Принципиальная технологическая схема установки получения окисленных битумов.

Только окислением, а также глубокой вакуумной перегонкой нефтяных остатков не всегда удается получать битумы, удовлетворяющие всем требованиям существующих стандартов. В таких случаях прибегают к компаундированию на битумной смесительной установке или на месте использования битума. Снижение интереса к процессам окисления за рубежом связано с широким использованием компаундирования, в результате которого достигается требуемое качество битума. Компаундирование широко применяют при производстве строительных битумов. Дорожные битумы хорошего качества с высокими пенетрацией, растяжимостью при 0°С и низкой температурой хрупкости получают компаундированием переокисленного компонента и разжижителей.

Рассмотрим варианты получения компаундированных битумов.

1. Производство битумов по методу переокисление - разбавления. Для повышения пластичности битумов, получаемых из сырья с большим содержанием отходов масляного производства, на Новокуйбышевском НПЗ используется один из вариантов метода переокисления - разбавления. Получение так называемой переокисленной основы - фактически строительного битума БН -осуществляют в не теплоизолированной колонне, в которую подают гудрон с температурой 240°С и воздух. Температура окисления составляет 260°С. . Для уменьшения взрывоопасности в верхнюю часть колонны подают водяной пар. Битум из колонны откачивают через теплообменник, в котором температура продукта снижается до 200°С, частично в емкости готовой продукции, частично в кубы.

В кубы закачивают также асфальт и экстракт. После перемешивания воздухом компаунд отгружают в качестве дорожного битума. Определенное неудобство при работе по такой схеме представляет периодичность процесса смешения компонентов дорожного битума.

2. Производство битумов переокислением, разбавлением, перегонкой. В настоящее время высокопарафинистые нефти не используют для получения дорожных битумов на НПЗ топливного профиля. Потенциальным сырьем битумного производства на таких заводах могут быть только гудроны, из которых при окислении получаются битумы с неудовлетворительной дуктильностью.

Основной причиной неудовлетворительной дуктильности битумов является относительно низкое содержание ароматических углеводородов в конечном продукте. Невысокое содержание ароматических углеводородов в битумах, получаемых из высокопарафинистых нефтей, объясняется, прежде всего, недостаточным содержанием этих углеводородов в исходном сырье. Кроме того, при переработке сырья происходит дальнейшее снижение содержания соединений с ароматической структурой. В связи с этим, предложено проводить предварительное окисление части легкого высокопарафинистого сырья с тем, чтобы в какой-то степени перевести ароматические углеводороды в более высококипящие соединения, которые при последующей перегонке не выкипали бы, а оставались в остатке, что позволило бы увеличить дуктильность битумов.

Схема производства битумов по этому методу заключается в следующем. Часть сырья, легкий гудрон или мазут, переокисляется до температуры размягчения 70 - 100°С по КиШ и смешивается с не окисленной частью. Эта смесь подвергается вакуумной перегонке с получением в остатке перегонки битума с дуктильностью, соответствующей требованиям стандарта.

Для выбора наиболее предпочтительного способа получения компаундированных дорожных битумов с улучшенными свойствами необходимы специальные исследования по разработке рецептур и технологии их производства с учетом природы перерабатываемого сырья и специфических условий конкретного нефтеперерабатывающего завода.

Самыми массовыми потребителями нефтяных битумов в Республике Беларусь и России являются предприятия дорожного строительства. На их долю приходится свыше 65% от общего объема выпускаемых битумов. Битумы, используемые при строительстве отечественных дорог, в странах СНГ производятся по технологии окисления нефтяных остатков кислородом воздуха при повышенной температуре.

В то же время в течение последних двух-трех десятилетий в северных странах Финляндии, Швеции, Канаде и других, наиболее близких по климату к Беларуси и центральному и северо-западному районам России, дорожное строительство ведут с применением неокисленных битумов, производимых из тяжелых высокосмолистых нефтей типа венесуэльской, тяжелой арабской и т.п. . В связи с этим представляет интерес сопоставление некоторых качественных и эксплуатационных показателей тех и других видов дорожных битумов.

Рассмотрение приведенных в них групповых составов позволяет судить о повышенном содержании парафинонафтеновых и пониженном содержании тяжелых ароматических угле водородов в составе окисленного битума. За счет этого окисленные битумы обладают лучшими, в сравнении с не окисленными, низкотемпературными свойствами, но худшими значениями растяжимости и адгезии.

Физико-химические свойства различных битумов.

Неокисленные и компаундированные битумы имеют высокое содержание тяжелой ароматики, смол и характеризуются хорошими адгезионными характеристиками, высокой растяжимостью, но более высокой температурой хрупкости.

Исследования авторов последнего периода по анализу качества асфальтобетонов в реальных дорожных условиях показывают, что устойчивость к трещинам асфальтобетонных покрытий, созданных с применением не окисленных и компаундированных битумов, существенно выше, чем у композиций того же состава, но содержащих окисленный битум.

Технические свойства различных битумов.

Еще одно доказательство преимущества неокисленных битумов перед окисленными битумами дают результаты исследования их коллоидной структуры с использованием методов малоуглового рассеяния рентгеновских лучей. Авторами работы делается вывод, что неокисленные битумы содержат 85-86% мелких коллоидных образований с размерами частиц 0,9-1,0 нм и 12-13% крупных коллоидных частиц с размером 40,5-41,5 нм. Окисленный же битум дает другое распределение, а именно: 30-31% частиц с размером до 1,6 нм и 69-70% крупных коллоидных частиц с размером до 44,0 нм. Следовательно, неокисленные битумы являются мелкодисперсными коллоидными системами, относящимися к типу «золь». Окисленный битум, представленный в большей степени грубодисперсными частицами, можно отнести к типу «золь-гель».

Битумные системы типа «золь» более пластичны и, наряду с хорошими адгезионными характеристиками, это их качество способствует обеспечению повышенной гидрофобности асфальтобетонов, а гидрофобность уже напрямую связана с водостойкостью. В свою очередь, повышенная водостойкость увеличивает долговечность дорожного покрытия.

Немаловажным свойством любых битумов является стабильность их качества во времени как при обычных, так и при повышенных температурах. Вопрос стабильности следует оценивать с двух позиций. Первая - это устойчивость к процессам окисления под воздействием повышенных температур и вторая - коллоидная стабильность. Что касается коллоидной стабильности, не подлежит сомнению положение о более высокой устойчивости во времени систем типа «золь». При оценке термической стабильности битумы подвергали нагреву до 163°С в течение 5 часов в тонкой пленке толщиной 2-3 мм.

Изменение качественных показателей различных битумов после прогрева

Сравнение значений показателей однозначно свидетельствует о более высокой термической стабильности компаундированных и неокисленных битумов. Окисленные битумы, подвергшиеся термообработке, в большей степени теряют пластичность. У них ухудшаются также адгезионные свойства.

Не окисленные и компаундированные битумы после термообработки характеризуются высокими значениями остаточной пенетрации, растяжимости и адгезии, то есть эксплуатационные свойства битумов сохраняются на высоком уровне, а разница в соотношении показателей между окисленными и не окисленными битумами еще больше увеличивается.

По оценкам специалистов зарубежных фирм, ведущих в СНГ дорожное строительство (фирмы «Виртгем» ФРГ, «Нинасбитумен» Швеция, «Несте» и «Леммикяйнен» Финляндия), окисленные битумы, вырабатываемые по ГОСТ 22245-90, имеют недостаточную деформативность, адгезию и устойчивость к процессам окислительного старения и, несмотря на лучшую морозостойкость таких битумов, применение компаундированных и остаточных битумов намного более предпочтительно.

Подводя итог вышеизложенному, можно сформулировать следующее:
  • наиболее перспективной технологией производства окисленных битумов является их получение в непрерывно действующих аппаратах колонного типа;
  • несмотря на большое количество конструкционных решений по колонне окисления, работы в этом направлении продолжаются;
  • на основании проведенных аналитических исследований показано, что неокисленные битумы как компаундированные, так и остаточные характеризуются высокими значениями растяжимости, хорошей адгезией и высокой устойчивостью к процессам старения, по сравнению с окисленными битумами;
  • по-видимому, в Республике Беларусь наиболее предпочтительным способом получения различных типов битумов является получение переокисленного битума с последующим его компаундированием с утяжеленным гудроном.